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I. Introduction

An early and continuing goal of lidar research has been to

devise an inversion method whereby profiles of optical parameters

such as attenuation and backscatter coefficients in an inhomogenous

atmosphere can be quickly and accurately deduced from the return

signal of a monostatic, single wavelength lidar system. This is a

problem area where, as expressed by Collis and Russell in an excellent

review article "... the early promise of lidar has not yet been

fulfilled" [1]. Some of the difficulties encountered along the way

have been due to limitations in lidar performance and associated

data processing technology, while others follow from theoretical

requirements and constraints peculiar to the inversion process.

This article addresses some aspects of the latter category of

problems, and presents in particular a simple inversion method

based on a new form of a well-known analytical solution.

II. Review of the "Slope" and "Solution" Methods of Inversion

For a monostatic, single wavelength, pulsed lidar, the assumed

basic governing form is the single-scattering lidar equation:

P(r) s Po A L:(. exp[-a2ora(r')dr'J

In this equation P(r) is the instantaneous received power at time

t, PO the transmitted power at time to, c the velocity of light, 9

the pulse duration, A the effective system receiver area, r(ac(t-t )/2)

is the range, and P(r) and V(r) are respectively the volume backscatter
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and attenuation coefficients of the atmosphere. A more convenient

signal variable is the logarithmic, range-adjusted power, defined

as

S(r) = fnr 2p(r)] (2)

In terms of S = S(r) and So = S(r ), where r is a given constant

reference range, Eq. (1) may be expressed in a system-independent

form:

r

S-So = In -2 fadr', (3)
0 r

where o = P(r ).

The differential equation corresponding to Eq. (3) is

dS = 1 M -2a, (4)
dr dr

a solution which evidently requires knowing or assuming a relation-

ship between P and a whenever do/dr A 0. On the other hand, if the

atmosphere is homogeneous so that do/dr = 0, the attenuation coef-

ficient can be expressed directly in terms of the signal slope:

Cr = _1 dSShom. 2 "dr 5

This is the basis of the slope method of inversion [2,3], in which

typically the slope of the least squares straight line fit to the

curve S = $(r) is used as the best estimate of dS/dr over any

interval where S itself appears to be nearly a straight line.

6
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Going a step further, it has often been assumed that since the

atmosphere is more likely to be homogeneous over small rather than

large intervals, by applying the slope method to a succession of

small intervals a reasonable first approximation to a = C(r) in a

notably inhomogenous atmosphere may also be achieved. From Eq. (4)

it is clear this amounts to a conjecture that generally P'IdP/dr<<2a,

at least over most of the S curve. Untortunately, assumptions like

this appear not to be well justified for many situations of interest,

e.g., under conditions of dense cloud, fog, smoke, and dust. Even

under the relatively stable conditions prevailing in fogs, significant

local heterogeneities occur. For example, the spatial variation of

fog drop concentrations is often quite large, ranging up to two

orders of magnitude for certain size categories [4,51. Such micro-

structure variation along the lidar beam path could easily lead to

relatively large fluctuations in dp/dr, hence invalidating local

application of the slope method. The same criticism applies to the

so called "ratio" or "slice" method of inversion (6,7], which is

merely an extremely close variant of the slope method as applied to

successive range intervals. (Additional discussion on the merits

of the slope and ratio methods is available through the recent

articles of Kohl (8, 9] and Brown [10). Also, a theoretical example

which illustrates the inadequacy of the slope method for a case of

high visibility is given below in Section V.)

Several observational and theoretical studies have been published

which show that under a wide range of realistic circumstances 0 and

a can iA fact be related approximately according to a power law of

the for

: const. ok (6)
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where k depends on the lidar wavelength and various properties of

the obscuring aerosol. Reported values of the exponent are generally

on the interval 0.67<k i.0 (11-15]. If such a relationship is

assumed, Eq. (4) becomes

dS = t a -2a (7)r a dr

Although the above ordinary differential equation is nonlinear,

it nevertheless has an elementary structure, namely that of the

homogeneous Ricatti equation 1161. For a very long time (at least

over 100 years) it has been known that equations of this type may

be transformed to a first order linear form by introducing a new

unknown equal to the reciprocal of the original. The general

solution can therefore be easily written down as

r r1ra exy d---dr') - 2f M(f 1 S- d')d 8
"  ex(Jk - dr' ) k - k dr" , (8)

where C is the integration constant. If k is regarded as constant,

which appears not to be unduly restrictive and shall be assumed

here for Previty, a well known form of the solution may be obtained:

exp((S - S 0)/k(

(0;' " 2iexp[(S - So)/kldr)

r
0

where a = a(ro). The first appearance of Eq. (9) or its equivalent

in the literature on remote sensing was apparently in 1954 in the

context of rain intensity measurements by radar at attenuating

wavelengths (17].
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It has since re-emerged in several articles on the interpretation

of lidar measurements [3, 18-20).

In spite of the evident theoretical superiority of Eq. (9)

over the slope method (which corresponds to setting k = 0 in

Eq. (7)), it is the latter method which is most often used. This is

because Eq. (9) has a tendency to produce at best marginal results,

and in practice has likely been more a source of frustration than a

useful tool for analyzing radar or lidar returns. For example, in

their 1954 article referred to above, Hitschfeld and Bordan (171

concluded it was probably not possible to calibrate a radar set

accurately enough to make use of the solution, and that rainfall

measurements made without correcting for attenuation via the solu-

tion are in many cases more accurate than the corrected values.

Worse yet, others have noted the solution may lead to "... absurdly

large, infinite, or negative values.. ." [18] and "... physically

meaningless..." (211 results. Others have avoided such behavior

only by using unrealistically large values of k [31.

There is surprisingly little comment in the literature on the

reasons for the failure of Eq. (9). It seem only to be somewhat

vaguely attributed to the omission of multiple scattering effects

[1, 7]. However, since the slope method suffers from the same

deficiency, but with apparently much less drastic consequences,

this explanation is not very convincing.

9



Unfortunately, only a few relevant studies on the possible

importance of multiple scattering are available. In one of these,

Viezee et. al. [71 compared lidar and transmissometer measurements

in dense fog and found an apparent 10 to 45% overprediction of

lidar-derived visibilities using the slope method. They conjec-

tured this discrepancy was due. to the influence of forward and

multiple scattering and proposed an empirical correction to the

slope method for use under turbid atmosphere conditions. On the

other hand, they also noted that available theoretical descriptions

of multiple scattering [22-24] could not account for the observed

discrepancies in the lidar and transmissometer data. A later Monte

Carlo simulation of second and third order multiple scattering in

dense, homogeneous fog led to the conclusion that multiply scattered

radiation will cause the slope method to be in error by less than

about 10% for visibilites of the order of 100m [25].

From these studies it appears unlikely that even for a dense

dispersion the contribution of multiply scattered radiation could

make a crucial difference in the applicability of Eqs. (1) or (9).

Therefore, although it would certainly be desirable to replace

Eq. (1) with a new governing form containing higher scattering

approximations (perhaps, for example, along the lines recently

outlined by Samokhvalov [26]), there seems at present no justifi-

cation for regarding the inclusion of multiply scattered radiation

effects as the sine qua non for the inversion of lidar signals from

a markedly inhomogenous atmosphere. (In this regard it should be

recalled also that the traditional description of Eq. (l) as the

10
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single scattering lidar equation is a misnomer, since Eq. (1)

incorporates the assumption that backscattered photons are also

attenuated; hence it does include some multiple scattering effects.)

From a purely mathematical point of view, it is easy to see

the problem with Eq. (9): Since on average the signal decays with

range beyond r0 due to attenuation, 7 is determined as the ratio of

two numbers which each become progressively smaller with increasing

r; furthermore, the denominator, which must approach zero at nearly

the same rate as the numerator, is expressed as the difference

between two relatively large numbers. Such structure produces a

strong tendency for instability and suggests that unattainable

accuracy in the determination of a may often be requisite for

avoiding a singularity, even for signals which are free Gf noise.

The above description may be illustrated quantitatively by

considering the growth of a small perturbation in a due to an error

dSo in the determination of a . For the same signal let a be the

solution corresponding to a, and a' = a + 8 be the solution cor-

respondinj to a' = + 60 . Then from the integrated form of
0

Eq. (7) it follows that
r

S So = k In - f Or (10)

0 
0

= k In =7 " 2 a'dr,

0 r
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which implies

r

(1 + 6/a) (I + 5o/a0) exp ( f 6dr) (11)

r
0

For simplicity consider a homogeneous atmosphere with a a 0 Then

by differentiating Eq. (11) one obtains

dr k 20 )

where t = (I + 6/a ). This is a homogeneous Ricatti equation, like

Eq. (7), with a solution given by

2a(r(12)
(i.) ~ ~ i+-) a x~ 0 1 r)] (2a 0 a a-

From this expression it can be seen that an underestimate of a

(a <0) leads to 6-*-ar0 (i.e., a-+0) as r-ow. On the other hand, if a0

is overestimated (6o0), then a- within a finite distance given by

.2 n (13)
2% 0/

For example, if o = 10 kin', k = 1, and 60/1 = 102, then the

solution has a singularity within about the next 231 meters; also,

for r>r0 + br the solution is negative. This example is also shown

in Figure 1, where the unit of length for range plotted along the

abscissa has been set equal to 0.010 km (10e), and attenuation per

km is plotted along the ordinate. (This same choice . units is

12 A



used for all the theoretical curves of ar = a(r) given in this

paper. Corresponding curves of S - S 0vs. r use the same range

scale; S - S 0is of course dimensionless.) The tendencies shown in

Figure 1 are accentuated by larger a 0 /k (lower visibilities) and

larger 6 0Ia0 (poorer estimates of a )0

Finally, substitution of Eq. (12) back into Eq. (10) reproduces

the original signal, S - S 0 = -20 (r-r 0), independently of the

value of 6 0. Therefore, two main points should be emphasized

regarding these results: 1) Eq. (9) is - to loosely paraphrase a

terminology used in analogous, though generally more complicated

circumstances - "ill constructed", in that small differences in the

choice of boundary value a 0 provide no assurance that the corre-

sponding solutions will remain close for r>r 0. 2) Closeness of

the S(a) curve, reconstructed from the solution for a, to the

original S curve is insufficient to guarantee the reasonableness of

the solution. (Such closeness has been used in the past as a test

of validity of the solution (31.) Because of this behavior one

would expect, and experience has shovn,-that Eq. (9) by itself is

of very little practical value.

III. A New Solution Form

It is fortunately quite easy to select a different and more

appropriate solution form than Eq. (9). One merely has to evaluate

the integration constant C in Eq. (8) in term of a reference range

r m such that the solution is generated for r;Sr,, rather than for

rar 0as before. For constant k the result is

13
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o'(r) exp[(S - Sm)/k] (14)

a f exp [(S - S )/kl dr

r

where S = S(r ) and am = U(r m ). This seemingly innocuous change

from Eq. (9) makes a very significant difference in the behavior of

the solution. As r decreases from rm, a' is now determined as the

ratio of two numbers which each become progressively larger, so

that stability and accuracy are easy to maintain. The form of the

denominator also indicates that the dependence of the solution on

a decreases with decreasing r.
m

The contrasting behavior of Eqs. (9) and (14) is illustrated in

Figure 2. (In this and several subsequent figures, displays are

given of various "inversions" (solutions of Eqs. (9) and (14)) of

signals generated by Eq. (10) in response to specified a distribu-

tions. The value k = I was used in the computations, except where

otherwise indicated. (The choice of k is of course not important

so long as the same value is used for generating the signal as for

inverting it.)) Figure 2(a) shows the signal response to the plat-

form distribution of a given in Figure 2(b). Also in Figure 2(b)

are shown the signal inversions from Eq. (9) for boundary values

which are in error by t1%. Figure 2(c) displays the corresponding

inversions from Eq. (14) for boundary values which are in error by

±50%. The relatively small effect of a poor boundary value estimate

on Eq. (14) is obvious.

14



Analogous differences in the capacities of the inversions to

survive simulated signal noise are shown in Figure 3. Figure 3(a)

displays three superposed signals, the first being due to a constant

attenuation of 10 km- 1, and the others being like the first except

for ±10%. "blips" on the interval (30,32). Figures 3(b) and 3(c)

give the respective corresponding signal inversions from Eqs. (9)

and (14), wherein the correct boundary value has been used for all

solutions. It can be seen that the solution of Eq. (9) is obliter-

ated for ranges beyond the point noise is encountered, whereas

Eq. (14) displays a strong tendency to recover from signal errors.

The effect of an incorrect value of k is illustrated in Figure

4, where again the computations are based on the platform-shaped

distribution of attenuation shown in the prior figures, and k = 1

was used to generate the signal (shown in Figure 2(a)). In Figure

4(a) it can be seen that as soon as the signal slope varies, so

that the value of k enters into the calculations, the inversion

based on Eq. (9) fails. The much weaker impact on Eq. (14), illus-

trated in Figure 4(b), indicates great Accuracy in the determination

of k is not required.

In summary, these examples show that Eq. (14) is relatively

insensitive to the kinds of errors that are likely to effect the

inversion of real signals. Especially encouraging is the tendency

of Eq. (14) to approach the correct solution curve in spite of a

poor estimate of the boundary value, Gym . This raises the hope that

difficult, accurate "lidar calibrations" or independent measurements

of some optical parameter at a reference point, or through a given

15



layer, may not be necessary, at least for the majority of applica-

tions. In the next section, the question of how to make a reasonable,

self-contained estimate of am from the signal alone is considered.

IV. Estimation of am; Generalization of the Slope Method

It would appear to be a relatively straightforward matter to

obtain a good estimate for am, in view of the following circumstance:

Assuming the validity of the lidar equation, Eq. (1), and the

constitutive relation, Eq. (6), and assuming also that a varies

linearly over a specified interval (ra ,r b) , then it is possible to

express a solely in terms of the signal over the interval. This

follows directly from integration of Eqs. (9) and (14) over (r arb),

with So*Sa = S(ra) and S-Sb = S(rb):

-o 2 rb S
r b adr k 'en 1 - f exp[(S - S 

(15)

r r
a a

f dr = 2 An I + k b exp [(S - Sb)/kldr' , (16)

ra ra

where a = a(ra) and ab = a(rb). Because of the assumed linear

variation of a over (ra,rb), the average value of a on the interval

is just =(aa + ab)/2. Therefore, Eqs. (15) and (16) may be

combined to predict the values of &, Ga, or Gb . For example, a is

obtained from the solution of the equation

= (1 exp(-)) - 1) (17)
21 ab 2 1ba

16



whe re

2a(rb - r a )

rb

Iab = (rb - ra) f exp((S - Sa)/kldr' ,  (19)
r
a

and

r

=ba (rb - r exp((S - Sb)/kjdr' = lab exp[(Sa - Sb)/k ]  (20)
r
a

Since the assumption that a is linear will become better with

decreasing interval size, the application of Eqs. (17) - (20) over

a succession of small intervals would appear in principle to consti-

tute an inversion of the lidar signal which does not require any

information beyond that contained in the signal itself. In practice

however, the local structure of the signal is not known well enough

to ensure the success of such a method. This can be seen by consid-

ering the form of the solution to Eqs. (17) - (20) for the case

that Q<<l, i.e., for intervals Ar<<k/2&. By expansion of Iab and

Iba to include terms proportional to &r2, the solution for & is

found to be

=-3(S'a+ S'b + 1 6- 16 S42 + 2 k (S' +16~(; - S'+% %, a.(s

where S' = (dS/dr)ra, S; = (dS/dr)rb, S" = (d2S/dr2)r,, and

9= (d 2S/dr2)rb. This generalization of the slope method result,

Eq. (5), is certainly more rigorous in its account of the local

geometry of the signal. Unfortunately however, the new term

17
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representing signal curvature are extremely difficult to estimate,

so that point-by-point application of Eqs. (17) - (20) or (21) can

generally be expected to provide little real improvement over the

slope method.

An example of the point-by-point use of Eq. (21) is shown in

Figure 5(b). For t' platform distribution used to generate the

lidar signal, the curvature is zero everywhere except at the points

where the slope changes abruptly, and at these points it becomes

infinite. The obvi),ii departurL; of the inversion curve shape from

the platform distribution are due to the effective numerical diffusion

of the input delta fimction distribution of curvature. Thus even

for this theoretical example wherein the lidar signal appears quite

smooth and is known to a high degree of accuracy, significant

errors occur in the estimation of signal curvature.

However, in defense of Eq. (21) it is also worth noting that

its point-by-point application, in conjunction with an algorithm to

smooth the signal, will generally permit a good recovery of the

broad features of an attenuation distribution. An example to this

.ffect is given in Figure 5(c). For the inversion shown the signal

in Figure 5(a) was smoothed 15 times (according to the simple scheme

that S*(Si+S.+Si )/3), subject of course to the constraint of

fixed curve end points. In general it appears adequate to smooth

the signal until IS"/S'g2LlO"'. Finally, the inversion displayed in

Figure 5(c) also produces nearly the same a for the entire range as

does the input distribution. This happens because & depends only on

Sb - Sa whenever aa %, as is evident from Eq. (10). Thus for

18



situations in which the endpoint values of attenuation are known to

be approximately equal (e.g., a localized obscurant in otherwise

clear air), the use of Eq. (21) with signal smoothing will not

result in a significant error in the estimate of total optical depth,

br
fbydr = &(rb-r).

r a

Although Eqs. (17) - (20) or Eq. (21) can be used to provide

estimates of a , the above discussion suggests there may on occasion

be instability problems for signals with "rough" structure. Greater

stability may of course be achieved by choosing a larger integration

interval, but offsetting this is the decreasing likelihood that a

remains linear over larger intervals. An alternative which is not

as impaired by the attempt to incorporate more signal information

over a larger interval is the following: From Eq. (16) one can

write

r

p r r

fbadr c f d - f d = k 2cr ra 1(22)
ra ra rb 2aec f cexp(S/k)dr'

c rb

where rc>rb>ra. For rc>>ra, rb the right hand side of this expres-

sion will be only weakly dependent on ac . Imagine now a hypothet-

ical linear extension of the signal curve beyond rm with a slope -A

equal, for example, to the mean slope of the curve over the range

of interest for roSr~rm; i.e., let rc>rm>rb and set S = Sm- A(r - r.)

for rmlr<rc. Then

19
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r c S r S

rfexp dr I1 ex(~r + h exp (j) M i exp(Ar e)
ra ra

so that for r >>r Eq. (22) becomes

r a i+rf exR[ -s Sm)/kldr

By substituting this result into Eq. (16), a corresponding estimate

of ab may be obtained.

Trial applications of Eq. (23) have shown that fairly good

results may usually be achieved by setting A = (So -S m)/(r m - r )

and choosing rb - r° to be as large as within a few percent of

r. - ro . The interval (r a ,rh) may, if desired, be taken as small

as the basic increment between data points. One may then use a so

obtained along with Eq. (14) (letting rm3 rb, etc.) to generate the

solution over (ro,rb). Alternatively, one may further approximate

am z b and generate the solution over (ro,rm).

V. Inversion Examples and Discussion

Some examples of inversions generated according to the procedure

described above are shown in Figures 6 - 8. In terms of the range

variable x = r/10 (r in meters) plotted along the abscissa, the

inversions shown were obtained from Eqs. (14), (16), and (23) using

20
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xa = 90, xb = 91, and xm = 100. (However, it should be noted that

these choices are not special ones required to produce the degree

of accuracy displayed in the figures; other similar choices produce

similar results, and indeed such relative insensitivity to the

choices of xa and xb provides a qualitative indication that the

inversions are not sericusly in error.) The overall accuracy of

the inversions can be seen to be quite good. For the distribution

shown in Figure 6(b) the average value of the input attenuation

over the entire range is . = 32.5 k " , whereas the inversionin

value is &out = 32.8 km" . Also shown in Figure 6(b) is an inversion

based on the smoothed signal in Figure 6(a) (smoothed 10 times in

accordance with the prescription given earlier); for it the average

attenuation is aout = 33.2 km-. For the distribution shown in
o-u-

Figure 7(b) the corresponding values are a. = 38.5 km and
in

a = 38.8 i -  the difference in this case being due almostout

entirely to a slight inversion misrepresentation at the bottoms of

the "troughs".

It is clear from Figures 6 and 7 that the inversion procedure

can recover considerable detail from the signal. In this regard it

is also noteworthy that special numerical processing is not necessary

to obtain good resolution. The computations used to generate the

figures involved only one slightly nonstandard procedure, namely

that of fitting the signal curve point-by-point with a composite

cubic spline [26], in order to provide greater accuracy in the

interpolation of the signal between base points. The subseqvent

numerical integrations were all carried out via Simpson's rule in

single precision. Nowever, nearly equivalent accuracy can be
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obtdined by using just single precision, point-by-point trapezoidal

rule integration without interpolation. This simpler approach should

be more than adequate in applications in view of the many other

relevant theoretical and experimental limitations.

Examples of inversions under high visibility conditions are

shown in Figure 8. For this case with ar 10 km ,the structure

visible in the signal is due to the predominance of the first term

on the right hand side of Eq. (7) or (10); i.e., the signal variation

is caused mainly by changes in the fractional gradient of attenuation,

rather than by changes in attenuation magnitude. Consequently, the

slope method of inversion applied to small intervals gives erroneous

results for a situation ironically representative of those for

which it is generally assumed most applicable. The failure of the

point-by-point application of the slope method is shown vividly by

the dashed curve in Figure 8(a). Even if one were to ignore signal

curve portions where negative values of a are predicted (a strategy

used in the past by slope method practitioners), the predicted

positive excursions in a are grossly overstated. (On the other

hand, it should also be noted that the slope method applied to the

entire range interval provides an excellent estimate for a.) The

fine structure of the input and inversion distributions is revealed

in the expanded ordinate scale of Figure 8(b). The corresponding

- -1 - -values of average attenuation are & . = 0.101 km- and a ot= 0.102 km-

An interesting new feature shown here is the tendency of the misfit

at the boundary point r mto carry on through the length of the

inversion. There is insufficient optical depth for the inversion

method to rapidly approach the true solution curve.
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Figures 9 and 10 illustrate situations where an additional

small computational step can improve the accuracy of the inversion.

If a increases or decreases significantly over the range (r 0 rm),

then the use of Eq. (23) as described earlier biases the estimate

of a mtoo much toward the value of & over (r 0 ,r ). Thus in Figure

9(b) ar is too small, whereas in Figure 10(b) it is too large. In

such situations where the inversion reveals a fairly systematic

trend in a (or if such behavior is known independently, or can,

e.g., be discerned directly by simple inspection of the signal), a

better estimate of aY can be obtained by iterating Eq. (23) with A

replaced by twice the current iterative value of a m(cf. Eq. (5)).

This gives greater weight to the signal information available near

r m. An indication of the improvement this strategy can bring about

is illustrated in Figures 9(b) and 10(b). A simpler alternative

which is appropriate when it is known that a is in a separate

regime on some interval (r a ,r m) near r m (e.g., clear air on the far

side of a smoke cloud, or clear air above an inversion) is simply

to set A = (S a- S m)/(r m- r a) in Eq. (23).

As a final example, inversions of a real lidar return from fog

are shown in Figure 11. The laser used emitted pulses averaging 10

millijoules in 6 nanoseconds at 1.06 pm, and a 20 megahertz samoling

rate transient recorder was used to produce sample points spaced

7. mn apart over the lidar return [27). The initial increase in

the lidar signal shown in Figure 11(a) is due to increasing a, and

is not caused by incomplete overlap of the transmitter and receiver

fields of view. The inversions are based on Eqs. (14), (16), and

(23), with A (S ~is - S 30 )/(r 30 - r15is In Figure 11(b) are shown
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the results for k = 1.0 and 0.67; the former value is probably

better for fog, but in any case the inversions, as demonstrated

earlier, do not depend strongly on the choice of k. For either

value of k the average attenuation is a = 13.0 km 1 . This result

can be compared to the visibility as measured by a transmissometer

during the same experiment. The transmissometer visibility v (1m),

based on a constrast threshold of 0.05 so that v = 3.0/a, is 0.20 km

1271. The corresponding value from the lidar inversion is v = 0.23 km.

The extent of agreement is as good as could be expected, given just

the uncertainties associated with the experimental data.
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